Source code for topo.analysis.weights

import numpy as np

import param
from holoviews import Store, Options, Layout, HoloMap, Histogram, Dimension
from holoviews.operation import TreeOperation

[docs]class WeightIsotropy(TreeOperation): """ Computes a histogram of azimuths between the positional preferences of pre- and post-synaptic neurons weighted by the connection strength and normalized relative to the orientation preference. Useful for determining whether lateral connection are anisotropic along the axis of preferred orientation. """ num_bins = param.Integer(default=20, doc=""" Number of bins in the histogram.""") roi = param.NumericTuple(default=(-0.5, -0.5, 0.5, 0.5), doc=""" Region of interest supplied as a four-tuple of the form (left, bottom, right, top)""") projections = param.List(default=[], doc=""" List of tuples of the form (sheet, projection).""") @classmethod def _last(cls, obj): return obj.last if isinstance(obj, HoloMap) else obj def _process(self, tree, key=None): layout = Layout() for s, p in self.p.projections: # Get last element orelmnt = self._last(tree.OrientationPreference[s]) xelmnt = self._last(tree.XPreference[s]) yelmnt = self._last(tree.YPreference[s]) # If any preference has not been supplied skip analysis if any(not o for o in [orelmnt, xelmnt, yelmnt]): return Layout() # Flatten preferences xpref_arr = xelmnt.data.flat ypref_arr = yelmnt.data.flat # Iterate over CFs in ROI l, b, r, t = self.p.roi lat_weights = tree.CFs[p] azimuths, weights = [], [] for key, cf in lat_weights[l:r, b:t].items(): # Get preferences for a particular unit unit_angle, unit_x, unit_y = orelmnt[key], xelmnt[key], yelmnt[key] weight_arr = cf.situated.data.flat weight = weight_arr[weight_arr>0] xpref = xpref_arr[weight_arr>0] ypref = ypref_arr[weight_arr>0] # Compute x/y-preference differences between # pre- and post-synaptic neurons dx = unit_x - xpref dy = unit_y - ypref # Compute angle between position preferences # of the pre- and post-synaptic neurons # Correcting for preferred orientation conn_angle = np.arctan2(dy, dx) conn_angle[conn_angle<0] += 2*np.pi delta = conn_angle - unit_angle delta2 = conn_angle - (unit_angle + np.pi) delta = np.hstack([delta, delta2]) delta[delta<0] += 2*np.pi weight = np.hstack([weight, weight]) azimuths.append(delta) weights.append(weight) # Combine azimuths and weights for all CFs azimuths = np.concatenate(azimuths) weights = np.concatenate(weights) # Compute histogram bins, edges = np.histogram(azimuths, range=(0, 2*np.pi), bins=self.p.num_bins, weights=weights, normed=True) # Construct Elements label =' '.join([s, p]) histogram = Histogram(bins, edges, group="Weight Isotropy", kdims=[Dimension('Azimuth')], label=label) layout.WeightIsotropy['_'.join([s, p])] = histogram return layout
[docs]def circular_dist(a, b, period): """ Returns the distance between a and b (scalars) in a domain with `period` period. """ return np.minimum(np.abs(a - b), period - np.abs(a - b))
[docs]class WeightDistribution(TreeOperation): """ Computes histogram of the difference in feature preference between pre- and post-synaptic neurons weighted by the connection strength between them. """ feature = param.String(default='Orientation', doc=""" Feature to compute the distribution over""") num_bins = param.Integer(default=10, doc=""" Number of histogram bins.""") normalized = param.Boolean(default=False, doc=""" Whether to normalize the histogram""") projections = param.List(default=[], doc=""" List of tuples of the form (sheet, projection).""") weighted = param.Boolean(default=True) def _process(self, tree, key=None): preferences = tree[self.p.feature+'Preference'] layout = Layout() for s, p in self.p.projections: if s not in preferences: continue featurepref = preferences[s] if isinstance(featurepref, HoloMap): featurepref = featurepref.last feature = featurepref.value_dimensions[0] feature_arr = featurepref.data.flat cfs = tree.CFs[p] deltas, weights = [], [] for k, cf in cfs.items(): preferred = featurepref[k] weight_arr = cf.situated.data.flat feature_slice = feature_arr[weight_arr>0] weight_slice = weight_arr[weight_arr>0] if feature.cyclic: feature_delta = circular_dist(preferred, feature_slice, feature.range[1]) else: feature_delta = np.abs(feature_slice-preferred) deltas.append(feature_delta) weights.append(weight_slice) deltas = np.concatenate(deltas) weights = np.concatenate(weights) bin_range = (0, feature.range[1]/2.) if feature.cyclic else None bins, edges = np.histogram(deltas, range=bin_range, bins=self.p.num_bins, weights=weights, normed=self.p.normalized) # Construct Elements label = ' '.join([s,p]) group = '%s Weight Distribution' % self.p.feature histogram = Histogram(bins, edges, group=group, label=label, kdims=[' '.join([self.p.feature, 'Difference'])], vdims=['Weight']) layout.WeightDistribution['_'.join([s,p])] = histogram return layout
options = Store.options(backend='matplotlib') options.Histogram.Weight_Isotropy = Options('plot', projection='polar', show_grid=True)