"""
Learning functions and projection-level learning functions (see projfn.py)
written in C to optimize performance.
Requires the weave package; without it unoptimized versions are used.
"""
from numpy import zeros, ones
import param
from topo.base.sheet import activity_type
from topo.base.cf import CFPLearningFn,CFPLF_Plugin
from topo.learningfn.projfn import CFPLF_PluginScaled
from topo.base.functionfamily import Hebbian,LearningFn
from topo.misc.inlinec import inline,provide_unoptimized_equivalent,\
c_header,c_decorators
from topo.learningfn import BCMFixed
from projfn import CFPLF_Trace # pyflakes:ignore (optimized version provided)
[docs]class CFPLF_Hebbian_opt(CFPLearningFn):
"""
CF-aware Hebbian learning rule.
Implemented in C for speed. Should be equivalent to
CFPLF_Plugin(single_cf_fn=Hebbian), except faster.
As a side effect, sets the norm_total attribute on any cf whose
weights are updated during learning, to speed up later operations
that might depend on it.
May return without modifying anything if the learning rate turns
out to be zero.
"""
single_cf_fn = param.ClassSelector(LearningFn,default=Hebbian(),readonly=True)
def __call__(self, iterator, input_activity, output_activity, learning_rate, **params):
single_connection_learning_rate = self.constant_sum_connection_rate(iterator.proj_n_units,learning_rate)
if single_connection_learning_rate==0:
return
cfs = iterator.flatcfs
num_cfs = len(cfs) # pyflakes:ignore (passed to weave C code)
irows,icols = input_activity.shape
cf_type = iterator.cf_type # pyflakes:ignore (passed to weave C code)
# CEBALERT: this function *always* skips inactive units,
# because it uses the output_activity directly rather than
# going through the iterator. That's ok since we know this
# function can always skip inactive units. But the unoptimized
# equivalent should be made to do the same, because right now
# it respects the iterator. (Just a case of setting the
# iterator's active_units_mask to be True before calling the
# iterator in the unoptimized version.)
sheet_mask = iterator.get_sheet_mask() # pyflakes:ignore (passed to weave C code)
code = c_header + """
DECLARE_SLOT_OFFSET(weights,cf_type);
DECLARE_SLOT_OFFSET(input_sheet_slice,cf_type);
DECLARE_SLOT_OFFSET(mask,cf_type);
DECLARE_SLOT_OFFSET(_norm_total,cf_type);
DECLARE_SLOT_OFFSET(_has_norm_total,cf_type);
%(cfs_loop_pragma)s
for (int r=0; r<num_cfs; ++r) {
double load = output_activity[r];
if (load != 0 && sheet_mask[r] != 0) {
load *= single_connection_learning_rate;
PyObject *cf = PyList_GetItem(cfs,r);
LOOKUP_FROM_SLOT_OFFSET(float,weights,cf);
LOOKUP_FROM_SLOT_OFFSET(int,input_sheet_slice,cf);
LOOKUP_FROM_SLOT_OFFSET(float,mask,cf);
UNPACK_FOUR_TUPLE(int,rr1,rr2,cc1,cc2,input_sheet_slice);
double total = 0.0;
// modify non-masked weights
npfloat *inpj = input_activity+icols*rr1+cc1;
for (int i=rr1; i<rr2; ++i) {
npfloat *inpi = inpj;
for (int j=cc1; j<cc2; ++j) {
// The mask is floating point, so we have to
// use a robust comparison instead of testing
// against exactly 0.0.
if (*(mask++) >= MASK_THRESHOLD) {
*weights += load * *inpi;
total += fabs(*weights);
}
++weights;
++inpi;
}
inpj += icols;
}
// store the sum of the cf's weights
LOOKUP_FROM_SLOT_OFFSET(double,_norm_total,cf);
_norm_total[0]=total;
LOOKUP_FROM_SLOT_OFFSET(int,_has_norm_total,cf);
_has_norm_total[0]=1;
}
}
"""%c_decorators
inline(code, ['input_activity', 'output_activity','sheet_mask','num_cfs',
'icols', 'cfs', 'single_connection_learning_rate','cf_type'],
local_dict=locals(),
headers=['<structmember.h>'])
[docs]class CFPLF_Hebbian(CFPLF_Plugin):
"""Same as CFPLF_Plugin(single_cf_fn=Hebbian()); just for non-optimized fallback."""
single_cf_fn = param.ClassSelector(LearningFn,default=Hebbian(),readonly=True)
provide_unoptimized_equivalent("CFPLF_Hebbian_opt","CFPLF_Hebbian",locals())
# CBERRORALERT: classes from here on probably ignore the sheet mask
# JABALERT: Is this really a fixed-threshold BCM rule? If so, is that really useful?
[docs]class CFPLF_BCMFixed_opt(CFPLearningFn):
"""
CF-aware BCM learning rule.
Implemented in C for speed. Should be equivalent to
BCMFixed for CF sheets, except faster.
As a side effect, sets the norm_total attribute on any cf whose
weights are updated during learning, to speed up later operations
that might depend on it.
May return without modifying anything if the learning rate turns
out to be zero.
"""
unit_threshold=param.Number(default=0.5,bounds=(0,None),doc="Threshold between LTD and LTP.")
def __call__(self, iterator, input_activity, output_activity, learning_rate, **params):
rows,cols = output_activity.shape
cfs = iterator.flatcfs
num_cfs = len(cfs) # pyflakes:ignore (passed to weave C code)
single_connection_learning_rate = self.constant_sum_connection_rate(iterator.proj_n_units,learning_rate)
if single_connection_learning_rate==0:
return
unit_threshold=self.unit_threshold # pyflakes:ignore (passed to weave C code)
irows,icols = input_activity.shape
cf_type = iterator.cf_type # pyflakes:ignore (passed to weave C code)
code = c_header + """
DECLARE_SLOT_OFFSET(weights,cf_type);
DECLARE_SLOT_OFFSET(input_sheet_slice,cf_type);
DECLARE_SLOT_OFFSET(mask,cf_type);
DECLARE_SLOT_OFFSET(_norm_total,cf_type);
DECLARE_SLOT_OFFSET(_has_norm_total,cf_type);
%(cfs_loop_pragma)s
for (int r=0; r<num_cfs; ++r) {
double load = output_activity[r];
double unit_activity= load;
if (load != 0) {
load *= single_connection_learning_rate;
PyObject *cf = PyList_GetItem(cfs,r);
LOOKUP_FROM_SLOT_OFFSET(float,weights,cf);
LOOKUP_FROM_SLOT_OFFSET(int,input_sheet_slice,cf);
LOOKUP_FROM_SLOT_OFFSET(float,mask,cf);
UNPACK_FOUR_TUPLE(int,rr1,rr2,cc1,cc2,input_sheet_slice);
double total = 0.0;
// modify non-masked weights
npfloat *inpj = input_activity+icols*rr1+cc1;
for (int i=rr1; i<rr2; ++i) {
npfloat *inpi = inpj;
for (int j=cc1; j<cc2; ++j) {
// The mask is floating point, so we have to
// use a robust comparison instead of testing
// against exactly 0.0.
if (*(mask++) >= MASK_THRESHOLD) {
*weights += load * *inpi * (unit_activity - unit_threshold);
if (*weights<0) { *weights = 0;}
total += fabs(*weights);
}
++weights;
++inpi;
}
inpj += icols;
}
// store the sum of the cf's weights
LOOKUP_FROM_SLOT_OFFSET(double,_norm_total,cf);
_norm_total[0]=total;
LOOKUP_FROM_SLOT_OFFSET(int,_has_norm_total,cf);
_has_norm_total[0]=1;
}
}
"""%c_decorators
inline(code, ['input_activity', 'output_activity','num_cfs',
'icols', 'cfs', 'single_connection_learning_rate',
'unit_threshold','cf_type'],
local_dict=locals(),
headers=['<structmember.h>'])
[docs]class CFPLF_BCMFixed(CFPLF_Plugin):
"""Same as CFPLF_Plugin(single_cf_fn=BCMFixed()); just for non-optimized fallback."""
single_cf_fn = param.ClassSelector(LearningFn,default=BCMFixed(),readonly=True)
provide_unoptimized_equivalent("CFPLF_BCMFixed_opt","CFPLF_Hebbian",locals())
# CEBALERT: 2009/04/03 - when used in GCA-LISSOM, causes Python to crash.
[docs]class CFPLF_Scaled_opt(CFPLF_PluginScaled):
"""
CF-aware Scaled Hebbian learning rule.
Implemented in C for speed. Should be equivalent to
CFPLF_PluginScaled(single_cf_fn=Hebbian), except faster.
As a side effect, sets the norm_total attribute on any cf whose
weights are updated during learning, to speed up later operations
that might depend on it.
"""
single_cf_fn = param.ClassSelector(LearningFn,default=Hebbian(),readonly=True)
def __call__(self, iterator, input_activity, output_activity, learning_rate, **params):
if self.learning_rate_scaling_factor is None:
self.learning_rate_scaling_factor = ones(output_activity.shape)*1.0
learning_rate_scaling_factor = self.learning_rate_scaling_factor # pyflakes:ignore (passed to weave C code)
single_connection_learning_rate = self.constant_sum_connection_rate(iterator.proj_n_units,learning_rate)
if single_connection_learning_rate==0:
return
cfs = iterator.flatcfs
num_cfs = len(cfs) # pyflakes:ignore (passed to weave C code)
irows,icols = input_activity.shape
cf_type = iterator.cf_type # pyflakes:ignore (passed to weave C code)
sheet_mask = iterator.get_sheet_mask() # pyflakes:ignore (passed to weave C code)
code = c_header + """
DECLARE_SLOT_OFFSET(weights,cf_type);
DECLARE_SLOT_OFFSET(input_sheet_slice,cf_type);
DECLARE_SLOT_OFFSET(mask,cf_type);
DECLARE_SLOT_OFFSET(_norm_total,cf_type);
DECLARE_SLOT_OFFSET(_has_norm_total,cf_type);
%(cfs_loop_pragma)s
for (int r=0; r<num_cfs; ++r) {
double load = output_activity[r];
double a = learning_rate_scaling_factor[r];
load = load * a;
if (load != 0 && sheet_mask[r] != 0) {
load *= single_connection_learning_rate;
PyObject *cf = PyList_GetItem(cfs,r);
LOOKUP_FROM_SLOT_OFFSET(float,weights,cf);
LOOKUP_FROM_SLOT_OFFSET(int,input_sheet_slice,cf);
LOOKUP_FROM_SLOT_OFFSET(float,mask,cf);
UNPACK_FOUR_TUPLE(int,rr1,rr2,cc1,cc2,input_sheet_slice);
double total = 0.0;
// modify non-masked weights
npfloat *inpj = input_activity+icols*rr1+cc1;
for (int i=rr1; i<rr2; ++i) {
npfloat *inpi = inpj;
for (int j=cc1; j<cc2; ++j) {
// The mask is floating point, so we have to
// use a robust comparison instead of testing
// against exactly 0.0.
if (*(mask++) >= MASK_THRESHOLD) {
*weights += load * *inpi;
total += fabs(*weights);
}
++weights;
++inpi;
}
inpj += icols;
}
// store the sum of the cf's weights
LOOKUP_FROM_SLOT_OFFSET(double,_norm_total,cf);
_norm_total[0]=total;
LOOKUP_FROM_SLOT_OFFSET(int,_has_norm_total,cf);
_has_norm_total[0]=1;
}
}
"""%c_decorators
inline(code, ['input_activity','learning_rate_scaling_factor', 'output_activity',
'sheet_mask', 'num_cfs', 'icols', 'cfs',
'single_connection_learning_rate','cf_type'],
local_dict=locals(),
headers=['<structmember.h>'])
[docs]class CFPLF_Scaled(CFPLF_PluginScaled):
"""Same as CFPLF_PluginScaled(single_cf_fn=Hebbian()); just for non-optimized fallback."""
single_cf_fn = param.ClassSelector(LearningFn,default=Hebbian(),readonly=True)
provide_unoptimized_equivalent("CFPLF_Scaled_opt","CFPLF_Scaled",locals())
[docs]class CFPLF_Trace_opt(CFPLearningFn):
"""
Optimized version of CFPLF_Trace; see projfn.py for more info
"""
trace_strength=param.Number(default=0.5,bounds=(0.0,1.0),doc="""
How much the learning is dominated by the activity trace, relative to the current value.""")
single_cf_fn = param.ClassSelector(LearningFn,default=Hebbian(),readonly=True,
doc="LearningFn that will be applied to each CF individually.")
def __call__(self, iterator, input_activity, output_activity, learning_rate, **params):
cfs = iterator.flatcfs # pyflakes:ignore (passed to weave C code)
single_connection_learning_rate = self.constant_sum_connection_rate(iterator.proj_n_units,learning_rate)
irows,icols = input_activity.shape
if single_connection_learning_rate==0:
return
cfs = iterator.flatcfs
num_cfs = len(cfs) # pyflakes:ignore (passed to weave C code)
##Initialise traces to zero if they don't already exist
if not hasattr(self,'traces'):
self.traces=zeros(output_activity.shape,activity_type)
self.traces = (self.trace_strength*output_activity)+((1-self.trace_strength)*self.traces)
traces = self.traces # pyflakes:ignore (passed to weave C code)
cf_type = iterator.cf_type # pyflakes:ignore (passed to weave C code)
code = c_header + """
DECLARE_SLOT_OFFSET(weights,cf_type);
DECLARE_SLOT_OFFSET(input_sheet_slice,cf_type);
DECLARE_SLOT_OFFSET(mask,cf_type);
DECLARE_SLOT_OFFSET(_norm_total,cf_type);
DECLARE_SLOT_OFFSET(_has_norm_total,cf_type);
%(cfs_loop_pragma)s
for (int r=0; r<num_cfs; ++r) {
double load = traces[r];
if (load != 0) {
load *= single_connection_learning_rate;
PyObject *cf = PyList_GetItem(cfs,r);
LOOKUP_FROM_SLOT_OFFSET(float,weights,cf);
LOOKUP_FROM_SLOT_OFFSET(int,input_sheet_slice,cf);
LOOKUP_FROM_SLOT_OFFSET(float,mask,cf);
UNPACK_FOUR_TUPLE(int,rr1,rr2,cc1,cc2,input_sheet_slice);
double total = 0.0;
// modify non-masked weights
npfloat *inpj = input_activity+icols*rr1+cc1;
for (int i=rr1; i<rr2; ++i) {
npfloat *inpi = inpj;
for (int j=cc1; j<cc2; ++j) {
// The mask is floating point, so we have to
// use a robust comparison instead of testing
// against exactly 0.0.
if (*(mask++) >= MASK_THRESHOLD) {
*weights += load * *inpi;
total += fabs(*weight);
}
++weights;
++inpi;
}
inpj += icols;
}
// store the sum of the cf's weights
LOOKUP_FROM_SLOT_OFFSET(double,_norm_total,cf);
_norm_total[0]=total;
LOOKUP_FROM_SLOT_OFFSET(int,_has_norm_total,cf);
_has_norm_total[0]=1;
}
}
"""%c_decorators
inline(code, ['input_activity', 'traces','num_cfs', 'icols',
'cfs', 'single_connection_learning_rate','cf_type'],
local_dict=locals(),
headers=['<structmember.h>'])
provide_unoptimized_equivalent("CFPLF_Trace_opt","CFPLF_Trace",locals())